equação Graceli estatística  tensorial quântica de campos 


[  /  IFF ]   G* =   /  G  /     .  /

 G  = [DR] =            .+  

+  G* =  = [          ] ω   / T] / c [    [x,t] ]  =  


//////

[  /  IFF ]  = INTERAÇÕES DE FORÇAS FUNDAMENTAIS. =

TeoriaInteraçãomediadorMagnitude relativaComportamentoFaixa
CromodinâmicaForça nuclear forteGlúon10411/r71,4 × 10-15 m
EletrodinâmicaForça eletromagnéticaFóton10391/r2infinito
FlavordinâmicaForça nuclear fracaBósons W e Z10291/r5 até 1/r710-18 m
GeometrodinâmicaForça gravitacionalgráviton101/r2infinito

G* =  OPERADOR DE DIMENSÕES DE GRACELI.

DIMENSÕES DE GRACELI SÃO TODA FORMA DE TENSORES, ESTRUTURAS, ENERGIAS, ACOPLAMENTOS, , INTERAÇÕES E CAMPOS, DISTRIBUIÇÕES ELETRÔNICAS, E OUTROS.










Em 1905, Albert Einstein forneceu uma explicação do efeito fotoelétrico, um experimento que a teoria ondulatória da luz não conseguiu explicar. Ele o fez postulando a existência de fótons, quanta de energia luminosa com qualidades particulares.

No efeito fotoelétrico, observou-se que incidir uma luz sobre certos metais levaria a uma corrente elétrica em um circuito. Presumivelmente, a luz estava expulsando elétrons do metal, fazendo com que a corrente fluísse. No entanto, usando o caso do potássio como exemplo, também foi observado que, embora uma luz azul fraca fosse suficiente para causar uma corrente, mesmo a luz vermelha mais forte e brilhante disponível com a tecnologia da época não causava nenhuma corrente. De acordo com a teoria clássica da luz e da matéria, a força ou amplitude de uma onda de luz era proporcional ao seu brilho: uma luz brilhante deveria ser forte o suficiente para criar uma grande corrente. No entanto, estranhamente, não foi assim.

Einstein explicou esse enigma postulando que os elétrons podem receber energia de um campo eletromagnético apenas em unidades discretas (quanta ou fótons): uma quantidade de energia E que estava relacionada à frequência f da luz por:


equação Graceli estatística  tensorial quântica de campos 


[  /  IFF ]   G* =   /  G  /     .  /

 G  = [DR] =            .+  

+  G* =  = [          ] ω   / T] / c [    [x,t] ]  =  


//////

Nessa expressão  é a constante de Planck (6,626 × 10^−34 Js). Apenas fótons de frequência alta o suficiente (acima de um certo valor limite) poderiam liberar um elétron. Por exemplo, os fótons de luz azul tinham energia suficiente para libertar um elétron do metal, mas os fótons de luz vermelha não. Um fóton de luz acima da frequência limiar poderia liberar apenas um elétron; quanto maior a frequência de um fóton, maior a energia cinética do elétron emitido, mas nenhuma quantidade de luz abaixo da frequência limiar poderia liberar um elétron. Violar essa lei exigiria lasers de altíssima intensidade que ainda não haviam sido inventados. Fenômenos dependentes de intensidade já foram estudados em detalhes com esses lasers.[14]

Einstein recebeu o Prêmio Nobel de Física em 1921 por sua descoberta da lei do efeito fotoelétrico.

A hipótese de De Broglie

Em 1924, Louis-Victor de Broglie formulou a hipótese de Broglie, alegando que toda matéria[15][16] tem uma natureza ondulatória, ele relacionou comprimento de onda e momento:


equação Graceli estatística  tensorial quântica de campos 


[  /  IFF ]   G* =   /  G  /     .  /

 G  = [DR] =            .+  

+  G* =  = [          ] ω   / T] / c [    [x,t] ]  =  


//////

Esta é uma generalização da equação de Einstein acima, uma vez que o momento de um fóton é dado por


equação Graceli estatística  tensorial quântica de campos 


[  /  IFF ]   G* =   /  G  /     .  /

 G  = [DR] =            .+  

+  G* =  = [          ] ω   / T] / c [    [x,t] ]  =  


//////

 , onde c é a velocidade da luz no vácuo.



A fórmula de De Broglie foi confirmada três anos depois para elétrons com a observação da difração de elétrons em dois experimentos independentes. Na Universidade de AberdeenGeorge Paget Thomson passou um feixe de elétrons através de um fino filme de metal e observou os padrões de interferência previstos. No Bell LabsClinton Joseph Davisson e Lester Halbert Germer guiaram o feixe de elétrons através de uma grade cristalina em seu experimento popularmente conhecido como experimento Davisson-Germer.

De Broglie foi agraciado com o Prêmio Nobel de Física em 1929 por sua hipótese. Thomson e Davisson dividiram o Prêmio Nobel de Física em 1937 por seu trabalho experimental.






Relação fundamental em processos de fotoemissão

Equação fundamental

Conhecendo as energias anteriormente definidas estamos aptos a compreender a equação fundamental que descreve o processo de fotoemissão. Tal equação fundamenta-se no princípio da conservação da energia e considera que a energia total do sistema inicialmente em equilíbrio somada à energia do fóton incidente deve igualar-se à energia total do sistema em equilíbrio após o elétron ser ejetado, somada à energia necessária para se remover o elétron e à energia cinética deste elétron no vácuo:


equação Graceli estatística  tensorial quântica de campos 


[  /  IFF ]   G* =   /  G  /     .  /

 G  = [DR] =            .+  

+  G* =  = [          ] ω   / T] / c [    [x,t] ]  =  


//////

Reagrupando os termos acima teremos:


equação Graceli estatística  tensorial quântica de campos 


[  /  IFF ]   G* =   /  G  /     .  /

 G  = [DR] =            .+  

+  G* =  = [          ] ω   / T] / c [    [x,t] ]  =  


//////

A expressão acima corresponde à equação geral que governa o processo de fotoemissão com a referência de energia tomada necessariamente como a energia de vácuo uma vez que a energia cinética é definida no referencial da amostra e que a energia de ligação relatada também encontra-se referida à energia de vácuo. Alguns problemas práticos surgem ao se considerar um experimento real, entretanto. O primeiro refere-se ao fato que a energia de vácuo acima citada corresponde à energia de vácuo da amostra e não à energia de vácuo do dispositivo realmente responsável por medir a energia cinética dos elétrons, o analisador de elétrons. Isto se deve ao fato de que as funções trabalho do analisador e da amostra não são necessariamente iguais, e, considerando-se que ambos encontram-se eletricamente conectados, uma diferença de potencial de contato existe entre o analisador e a amostra.

A existência deste potencial de contato traz algumas implicações quanto à medida da energia cinética no analisador uma vez que a mesma implica a existência de um campo elétrico na região em vácuo compreendida entre a superfície da amostra e do analisador. Um elétron que, em relação ao nível de vácuo da amostra, possua uma energia cinética Ecin, seria percebido pelo analisador (em relação ao seu próprio nível de vácuo, portanto), como possuindo uma energia cinética dada por Ecin.medida = Ecin - e , onde -e é a carga do elétron e  a diferença de potencial de contato entre a amostra e o analisador (e  =  amostra - analisador). O termo -e referese à energia ganha pelo elétron ao se mover da amostra até o analisador, estando a amostra em um potencial  abaixo do potencial do analisador. A existência da diferença de potencial de contato não seria problema caso esta fosse constante, mas quando se considera que amostras diferentes em análise possuem, cada qual, uma função trabalho diferente, na maioria das vezes previamente desconhecida, um problema real existe.

O problema atrelado ao potencial de contato reside na escolha do referencial de energia e para solucioná-lo basta portanto redefinir a energia de referência para um nível de energia comum tanto à amostra como ao analisador. Este nível de referência é evidente: a energia de Fermi.

Considerando que a diferença entre o nível de vácuo da amostra e a energia de fermi da mesma é a sua função trabalho , a energia cinética ECINF medida agora em relação ao nível de Fermi pode ser escrita como:


equação Graceli estatística  tensorial quântica de campos 


[  /  IFF ]   G* =   /  G  /     .  /

 G  = [DR] =            .+  

+  G* =  = [          ] ω   / T] / c [    [x,t] ]  =  


//////

A equação fundamental em processos de fotoemissão torna-se então:


equação Graceli estatística  tensorial quântica de campos 


[  /  IFF ]   G* =   /  G  /     .  /

 G  = [DR] =            .+  

+  G* =  = [          ] ω   / T] / c [    [x,t] ]  =  


//////

Nestas equações, tanto a energia de ligação EBF quanto a energia cinética EcinF referem-se agora à energia de Fermi, e usualmente costuma-se suprimir o "F" nesta expressão. O termo energia cinética neste caso foge, é claro, dos rigores de sua definição clássica e as energias cinéticas e de ligação Ecin e EB usualmente encontradas nas literatura encontram-se geralmente referidas à energia de fermi. Entretanto não são poucos os em que as mesmas encontram-se referidas ao nível de vácuo de forma que alguma atenção quanto a este ponto é sempre requerida ao se consultar as tais informações na literatura.




Espectros XPS são caracterizados por uma coletânea de pontos que apresentam flutuações características, o que implica, como já citado, em uma dispersão dos pontos experimentais ao redor dos valores ideais. A extração de informações dos espectros XPS exige em uma segunda etapa, mediante o uso de programa de processamento adequado a tal fim,[4] o tratamento e o ajuste estatístico de uma função analítica sobre os dados de cada um dos picos de interesse do espectro, dos quais resultam informações confiáveis e relevantes sobre os valores das áreas, posições e larguras dos picos de interesse. A partir destes resultados é que informações física relevantes serão inferidas.

O primeiro procedimento na análise de um pico consiste na remoção dos “elétrons de fundo”, da base na qual este se assenta. O processo mais simples para a remoção dos elétrons de fundo consiste na extração de uma base linear sob o pico no espectro original, sendo aplicável sempre que a correta identificação das posições de pontos base do pico é possível. Na maioria dos casos que envolvem semicondutores, este é o caso.

O ajuste de uma função analítica pode ser feito empiricamente ou procurando-se razões experimentais e teóricas para escolher-se a função para o ajuste, e neste caso geralmente funções gaussianaslorentzianas, ou em certos casos uma convolução das duas prestam-se bem ao serviço de ajuste aos dados experimentais. Em sua quase totalidade os ajustes destas funções a um mesmo pico fornecem resultados semelhantes para área, posição e largura de cada pico considerado, diferindo os resultados entre os ajustes por valores menores do que as incertezas nos resultados obtidos. Na figura vemos o ajuste do pico Ga3d para um espectro obtido de uma amostra de arseneto de gálio onde depositou-se uma pequena quantidade de césio na superfície. O ajuste é feito mediante uma função gaussiana, e o ajuste por lorentziana fornece resultados bem semelhantes.


equação Graceli estatística  tensorial quântica de campos 


[  /  IFF ]   G* =   /  G  /     .  /

 G  = [DR] =            .+  

+  G* =  = [          ] ω   / T] / c [    [x,t] ]  =  


//////

uma função gaussiana típica usada na análise de espectros XPS: os parâmetros A0, A1, Xc e W são ajustados pelo programa de análise de forma que a curva ajuste-se da melhor forma possível aos dados experimentais.






Analisando o efeito fotoelétrico quantitativamente usando o método de Einstein, as seguintes equações equivalentes são usadas:

Energia do fóton = Energia necessária para remover um elétron + Energia cinética do elétron emitido

Mais detalhes em: Energia do fóton

Algebricamente:

equação Graceli estatística  tensorial quântica de campos 


[  /  IFF ]   G* =   /  G  /     .  /

 G  = [DR] =            .+  

+  G* =  = [          ] ω   / T] / c [    [x,t] ]  =  


//////

Onde:

  • h é a constante de Planck,
  • f é a frequência do foton incidente,
  •  é a função trabalho, ou energia mínima exigida para remover um elétron de sua ligação atômica,
  •  é a energia cinética máxima dos elétrons expelidos,
  • f0 é a frequência mínima para o efeito fotoelétrico ocorrer,
  • m é a massa de repouso do elétron expelido, e
  • vm é a velocidade dos elétrons expelidos.



Comentários

Postagens mais visitadas deste blog