equação Graceli estatística tensorial quântica de campos [ / IFF ] G* = / G / .= / [DR] = .= + = G+ G* = = [ ] ω , , / T] / c [ [x,t] ] = |
//////
Teoria | Interação | mediador | Magnitude relativa | Comportamento | Faixa |
---|---|---|---|---|---|
Cromodinâmica | Força nuclear forte | Glúon | 1041 | 1/r7 | 1,4 × 10-15 m |
Eletrodinâmica | Força eletromagnética | Fóton | 1039 | 1/r2 | infinito |
Flavordinâmica | Força nuclear fraca | Bósons W e Z | 1029 | 1/r5 até 1/r7 | 10-18 m |
Geometrodinâmica | Força gravitacional | gráviton | 10 | 1/r2 | infinito |
G* = OPERADOR DE DIMENSÕES DE GRACELI.
DIMENSÕES DE GRACELI SÃO TODA FORMA DE TENSORES, ESTRUTURAS, ENERGIAS, ACOPLAMENTOS, , INTERAÇÕES E CAMPOS, DISTRIBUIÇÕES ELETRÔNICAS, E OUTROS.
Em eletromagnetismo e em geometria diferencial, o tensor eletromagnético ou tensor campo eletromagnético (às vezes chamado de tensor de Faraday ou bivector de Maxwell) é um objeto matemático que descreve o campo eletromagnético de um sistema físico. O tensor de campo foi usado pela primeira vez após a formulação do tensor quadridimensional da relatividade especial e foi introduzido por Hermann Minkowski. O tensor permite que algumas leis físicas possam ser escritas de uma forma muito concisa.
Definição
O tensor electromagnético, convencionalmente marcado F, é definido como a derivada exterior do quadripotencial eletromagnético, A, um diferencial de forma 1:[1][2]
Na física relativística, o tensor eletromagnético tensão–energia é a contribuição para o tensor tensão–energia devido ao campo eletromagnético.[1] O tensor tensão–energia descreve o fluxo de energia e momento no espaço-tempo. O tensor eletromagnético de tensão–energia contém o negativo do tensor de tensão de Maxwell clássico que governa as interações eletromagnéticas.
Definição
Unidades do S.I.
No espaço livre e no espaço-tempo plano, o tensor eletromagnético tensão–energia em unidades do S.I. é:[2]
equação Graceli estatística tensorial quântica de campos
[ / IFF ] G* = / G / .= /
[DR] = .= + =
G+ G* = = [ ] ω , , / T] / c [ [x,t] ] =
//////
onde é o tensor eletromagnético e onde é o tensor métrico de Minkowski [en] de assinatura métrica (− + + +). Ao usar a métrica com assinatura (+ − − −), a expressão à direita do sinal de igual terá sinal oposto.
Explicitamente em forma de matriz:
equação Graceli estatística tensorial quântica de campos
[ / IFF ] G* = / G / .= /
[DR] = .= + =
G+ G* = = [ ] ω , , / T] / c [ [x,t] ] =
//////
onde
equação Graceli estatística tensorial quântica de campos
[ / IFF ] G* = / G / .= /
[DR] = .= + =
G+ G* = = [ ] ω , , / T] / c [ [x,t] ] =
//////
é o vetor de Poynting,
equação Graceli estatística tensorial quântica de campos
[ / IFF ] G* = / G / .= /
[DR] = .= + =
G+ G* = = [ ] ω , , / T] / c [ [x,t] ] =
//////
é o tensor de tensão de Maxwell e c é a velocidade da luz. Assim, é expresso e medido em unidades de pressão do S.I. (pascal).
Convenções de unidades C.G.S.
A permissividade do espaço livre e a permeabilidade do espaço livre em unidades gaussianas [en] c.g.s. são:
equação Graceli estatística tensorial quântica de campos
[ / IFF ] G* = / G / .= /
[DR] = .= + =
G+ G* = = [ ] ω , , / T] / c [ [x,t] ] =
//////
então:
equação Graceli estatística tensorial quântica de campos
[ / IFF ] G* = / G / .= /
[DR] = .= + =
G+ G* = = [ ] ω , , / T] / c [ [x,t] ] =
//////
e na forma de matriz explícita:
equação Graceli estatística tensorial quântica de campos
[ / IFF ] G* = / G / .= /
[DR] = .= + =
G+ G* = = [ ] ω , , / T] / c [ [x,t] ] =
//////
onde o vetor de Poynting se torna:
equação Graceli estatística tensorial quântica de campos
[ / IFF ] G* = / G / .= /
[DR] = .= + =
G+ G* = = [ ] ω , , / T] / c [ [x,t] ] =
//////
O tensor tensão-energia para um campo eletromagnético em um meio dielétrico é menos bem compreendido e é o assunto da controvérsia não resolvida de Abraham – Minkowski.[3]
O elemento do tensor tensão-energia representa o fluxo do μ-ésimo componente do quadrimomento do campo eletromagnético, , passando por um hiperplano ( é constante ). Representa a contribuição do eletromagnetismo para a fonte do campo gravitacional (curvatura do espaço-tempo) na relatividade geral.
Propriedades algébricas
O tensor eletromagnético tensão-energia tem várias propriedades algébricas:
//////É um tensor simétrico:equação Graceli estatística tensorial quântica de campos
[ / IFF ] G* = / G / .= /
[DR] = .= + =
G+ G* = = [ ] ω , , / T] / c [ [x,t] ] =
- O tensor não tem traços:
equação Graceli estatística tensorial quântica de campos
[ / IFF ] G* = / G / .= /
[DR] = .= + =
G+ G* = = [ ] ω , , / T] / c [ [x,t] ] =
//////
ProvaUsando a forma explícita do tensor,
equação Graceli estatística tensorial quântica de campos
[ / IFF ] G* = / G / .= /
[DR] = .= + =
G+ G* = = [ ] ω , , / T] / c [ [x,t] ] =
//////
Baixando os índices e usando o fato de que
equação Graceli estatística tensorial quântica de campos
[ / IFF ] G* = / G / .= /
[DR] = .= + =
G+ G* = = [ ] ω , , / T] / c [ [x,t] ] =
//////
equação Graceli estatística tensorial quântica de campos
[ / IFF ] G* = / G / .= /
[DR] = .= + =
G+ G* = = [ ] ω , , / T] / c [ [x,t] ] =
//////
Então, usando
equação Graceli estatística tensorial quântica de campos
[ / IFF ] G* = / G / .= /
[DR] = .= + =
G+ G* = = [ ] ω , , / T] / c [ [x,t] ] =
//////
,
equação Graceli estatística tensorial quântica de campos
[ / IFF ] G* = / G / .= /
[DR] = .= + =
G+ G* = = [ ] ω , , / T] / c [ [x,t] ] =
//////
Observe que no primeiro termo, μ e α e apenas índices fictícios, então os renomeamos como α e β, respectivamente.
equação Graceli estatística tensorial quântica de campos
[ / IFF ] G* = / G / .= /
[DR] = .= + =
G+ G* = = [ ] ω , , / T] / c [ [x,t] ] =
//////
A simetria do tensor é como para um tensor tensão–energia geral na relatividade geral. O traço do tensor energia–momento é um escalar de Lorentz; o campo eletromagnético (e em particular as ondas eletromagnéticas) não tem escala de energia invariante de Lorentz, então seu tensor de energia-momento deve ter um traço de fuga. Essa ausência de traços eventualmente se relaciona com a falta de massa do fóton.[4]
Leis de conservação
Ver artigo principal: Leis de conservação
O tensor eletromagnético tensão–energia permite uma maneira compacta de escrever as leis de conservação de energia e de momento linear no eletromagnetismo. A divergência do tensor tensão–energia é:
equação Graceli estatística tensorial quântica de campos
[ / IFF ] G* = / G / .= /
[DR] = .= + =
G+ G* = = [ ] ω , , / T] / c [ [x,t] ] =
//////
onde é a força de Lorentz (4D) por unidade de volume na matéria.
Esta equação é equivalente às seguintes leis de conservação 3D
equação Graceli estatística tensorial quântica de campos
[ / IFF ] G* = / G / .= /
[DR] = .= + =
G+ G* = = [ ] ω , , / T] / c [ [x,t] ] =
//////
descrevendo respectivamente o fluxo de densidade de energia eletromagnética
equação Graceli estatística tensorial quântica de campos
[ / IFF ] G* = / G / .= /
[DR] = .= + =
G+ G* = = [ ] ω , , / T] / c [ [x,t] ] =
//////
equação Graceli estatística tensorial quântica de campos
[ / IFF ] G* = / G / .= /
[DR] = .= + =
G+ G* = = [ ] ω , , / T] / c [ [x,t] ] =
//////
e densidade de momento eletromagnético
equação Graceli estatística tensorial quântica de campos
[ / IFF ] G* = / G / .= /
[DR] = .= + =
G+ G* = = [ ] ω , , / T] / c [ [x,t] ] =
//////
onde J é a densidade de corrente elétrica, ρ a densidade de carga elétrica e é a densidade de força de Lorentz.
A relação é:
equação Graceli estatística tensorial quântica de campos
[ / IFF ] G* = / G / .= /
[DR] = .= + =
G+ G* = = [ ] ω , , / T] / c [ [x,t] ] =
//////
Onde é o torque, é o momento magnético, e é o campo magnético. O alinhamento do momento magnético com o campo cria uma diferença na energia potencial U:
equação Graceli estatística tensorial quântica de campos
[ / IFF ] G* = / G / .= /
[DR] = .= + =
G+ G* = = [ ] ω , , / T] / c [ [x,t] ] =
//////
Um dos exemplos mais simples de momento magnético é o de uma espiral condutora da electricidade, com intensidade I e área A, para a qual a magnitude é:
equação Graceli estatística tensorial quântica de campos
[ / IFF ] G* = / G / .= /
[DR] = .= + =
G+ G* = = [ ] ω , , / T] / c [ [x,t] ] =
//////
equação Graceli estatística tensorial quântica de campos [ / IFF ] G* = / G / .= / [DR] = .= + = G+ G* = = [ ] ω , , / T] / c [ [x,t] ] = |
//////
Comentários
Postar um comentário